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Abstract. In this paper we examine ensemble methods for regression that leverage or “boost” base regressors
by iteratively calling them on modified samples. The most successful leveraging algorithm for classification is
AdaBoost, an algorithm that requires only modest assumptions on the base learning method for its strong theoretical
guarantees. We present several gradient descent leveraging algorithms for regression and prove AdaBoost-style
bounds on their sample errors using intuitive assumptions on the base learners. We bound the complexity of the
regression functions produced in order to derive PAC-style bounds on their generalization errors. Experiments
validate our theoretical results.
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1. Introduction

In this paper we consider the following regression setting. Data is generated IID from an
unknown distribution P on some domain X and labeled according to an unknown function
g. A learning algorithm receives a sample S = {(x1, g(xi )), . . . , (xm, g(xm))} and attempts
to return a function f close to g on the domain X . There are many ways to measure the
closeness of f to g, for example one may want the expected squared error to be small or
one may want f to be uniformly close to g over the entire domain.

In fact, one often considers the case where the sample may not be labeled perfectly by
any function, but rather has random noise modifying the labels. In this paper we consider
only the noise free case. However, many algorithms with good performance guarantees
for the noise free case also work well in practical settings. AdaBoost (Freund & Schapire,
1997; Bauer & Kohavi, 1999; Quinlan, 1996; Freund & Schapire, 1996) is one example
in the classification setting, although its performance does degrade as the amount of noise
increases.

A typical approach for learning is to choose a function class F and find some f ∈F with
small error on the sample. If the sample is large enough with respect to the complexity of
the class F , function f will also have small error on the domain X with high probability
(see e.g. Anthony & Bartlett, 1999).

Computationally efficient algorithms using this approach must obtain a simple and
accurate hypothesis in a short time. There are many learning algorithms that efficiently
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produce simple hypotheses, but the accuracy of these methods may be less than desirable.
Leveraging techniques, such as boosting (Duffy & Helmbold, 2000; Freund, 1995; Freund,
1999; Freund & Schapire, 1997; Friendman, Hastie, & Tibshirani, 2000; Schapire, 1992)
and Arcing (Breiman, 1998, 1999) attempt to take advantage of such algorithms to efficiently
obtain a hypothesis with arbitrarily high accuracy. These methods work by repeatedly call-
ing a simple (or base) learning method on modified samples in order to obtain different
base hypotheses that are combined into an improved master hypothesis. Of course, the
complexity of the combined hypothesis will often be much greater than the complexity of
the base hypotheses. However, if the improvement in accuracy is large compared to the
increase in complexity, then leveraging can improve not only the training error, but also the
generalization performance.

Leveraging has been examined primarily in the classification setting where AdaBoost
(Freund & Schapire, 1997) and related leveraging techniques (Breiman, 1996, 1998, 1999;
Duffy & Helmbold, 1999; Friedman, Hastie, & Tibshirani, 2000; Rätsch, Onoda, & Müller,
2001) are useful for increasing the accuracy of base classifiers. These algorithms con-
struct a linear combination of the hypotheses returned by the base algorithm, and have
recently been viewed as performing gradient descent on a potential function (Breiman,
1999; Rätsch, Onoda, & Müller, 2001; Friedman, Hastie, & Tibshirani, 2000; Duffy &
Helmbold, 1999; Mason et al., 2000). This viewpoint has enabled the derivation and anal-
ysis of new algorithms in the classification setting (Friedman, Hastie, & Tibshirani, 2000;
Duffy & Helmbold, 1999, 2000; Mason et al., 2000). Recent work by Friedman has shown
that this gradient descent viewpoint can also be used to construct leveraging algorithms for
regression with good empirical performance (Friedman, 1999a).

We are aware of several other applications of gradient descent leveraging to the regression
setting (Freund & Schapire, 1997; Friedman, 1999a; Lee, Bartlett, & Williamson, 1995;
Rätsch, Onoda, & Müller, 2000; Breiman, 1998, 1999). These approaches are discussed in
more detail in Section 2.

Several issues arise when analyzing and deriving gradient descent leveraging algorithms.
First, the potential function must be chosen carefully; minimizing this potential must imply
that the master function performs well with respect to the loss function of interest. This
potential should also be amenable to analysis; most of the bounds on such algorithms are
proved using an amortized analysis of the potential (Freund & Schapire, 1997; Freund,
1995; Duffy & Helmbold, 1999; Freund, 1999). This paper examines several potential
functions for leveraging in the regression setting and proves performance bounds for the
resulting gradient descent algorithms. Second, assumptions need to be made about the
performance of the base learners in order to derive bounds. In particular, if the base learner
does not return useful hypotheses, then the leveraging algorithm cannot be expected to
make progress. What constitutes a useful hypothesis will depend on the potential function
being minimized. Furthermore, how “usefulness” is measured has a major impact on the
difficulty of proving performance bounds. In this paper, we attempt to use weak assumptions
on the base learners and intuitive measures of “usefulness.” Finally, we desire performance
bounds that are of the strongest form possible. In this paper, we prove non-asymptotic
bounds on the sample error that hold for every iteration of the leveraging algorithm. These
sample error bounds lead to PAC-style generalization bounds showing that with arbitrarily
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high probability over the random sample, the leveraging algorithm will have arbitrarily
low generalization error. To obtain this performance our algorithms need only run for a
polynomial number of iterations.

The two main contributions of this work are the first direct application of AdaBoost-style
analysis to the regression setting and the development of a general methodology leading
to three principled leveraging algorithms for regression. We also present several important
observations about how the regression setting differs from classification. For example, one
of our algorithms exhibits an interesting tradeoff between its computation time and the
size of the coefficients multiplying the base hypotheses. Note that unlike classification, the
standard generalization bounds for regression depend on the size of these coefficients. This
tradeoff is discussed further in Section 3.

One key difference between classification and regression is that base learners in the
classification setting can be forced to return useful hypotheses simply by manipulating the
distribution over the sample. This is not true for regression, where leveraging algorithms
must also modify the sample in some other way (see Remark 2.1). In particular, our algo-
rithms modify the labels in the sample. However, no useful base learner can perform well
with respect to an arbitrarily labeled sample. In Section 2.3, we show that the relabeling
method used by our algorithms is not arbitrary, often creating samples that are consistent
with the original target class. Experiments described in Section 5 show that, on real world
data sets, the base learners maintain a significant edge for a large number of iterations,
despite the relabelings used by our algorithms.

Throughout the paper we use the following notation. The leveraging algorithm is given
a set S of m training examples, S = {(x1, y1), . . . , (xm, ym)}. Each iteration of the leverag-
ing process the algorithm modifies the sample S to produce S̃ = {(x1, ỹ1), . . . , (xm, ỹm)}
with the same x’s but possibly different ỹ values. The leveraging algorithm then creates
a distribution D over the modified sample S̃ and calls a base regression algorithm on the
modified sample with the distribution D. The base regressor produces a function f ∈F
with some “edge” ε on S̃ under D. (The different algorithms evaluate the amount of “edge”
differently.) The new master regressor then chooses a positive coefficient1 α for the new
base function and updates its master regression function to F +α f . For a master regression
function F , the residuals are ri = yi − F(xi ) for 1 ≤ i ≤ m. We often use bold face as
abbreviations for vectors over the sample, e.g. f = ( f (x1), . . . , f (xm)), y = (y1, . . . , ym),
and r = (r1, . . . , rm).

We use three different potentials to derive leveraging algorithms for regression. Two
of these potential functions are variants of the squared error and the third is an exponen-
tial criterion motivated by AdaBoost. Our first algorithm, SQUARELEV.R, uses a uniform
distribution on the sample and ỹ labels proportional to the gradient of the potential. An
amortized analysis shows that this algorithm effectively reduces the loss on the sample if
the base regressor returns a function f whose correlation coefficient with the ỹ values is
bounded away from 0.

SQUARELEV.C, our second algorithm, uses the squared error potential, but with confidence
rated classifiers as its base regressors. This second procedure places a distribution D on the
examples proportional to the absolute value of the gradient of the square loss and ỹ labels
equal to the sign of the gradient. We prove that this procedure effectively reduces the loss
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on the sample when the base classifier produces functions f satisfying

∑
i D(xi )ỹi f (xi )√∑

i D(xi )2
√∑

i f (xi )2
≥ ε.

Both of these constraints on the base regressor are similar to those assumed by the GeoLev
algorithm (Duffy & Helmbold, 1999) and analogous to those for AdaBoost (Freund &
Schapire, 1997).

A third algorithm EXPLEV performs gradient descent on the following exponential cri-
terion: P(r) =

∑
i exp(sri ) + exp(−sri ) − 2 where s is a scaling factor. This is a two-

sided version of AdaBoost’s exp(−margin) potential. Whereas in the classification set-
ting AdaBoost can be seen as increasing the smallest margin, for regression we want
to decrease the magnitude of the residuals. By noting that when sri ' 0 or sri ( 0, the
contribution to our potential is close to exp(s|ri |), it seems reasonable that this potential
tends to decrease the maximum magnitude of the residuals. The probability D(xi ) used
by EXPLEV is proportional to the absolute value of the gradient of P(r) with respect to F,
|∇i P| = |s exp(−sri )− s exp(sri )|, and the ỹi label is −sign(∇i P). If the weak regressor
returns functions f with edge

∑
i D(xi )ỹi f (xi ) > ε then this procedure rapidly reduces

the exponential potential on the sample, and for appropriate s the maximum |yi − F(xi )|
value is at most η after O((ln m)/η ln( 1

1−ε2/6 )) iterations. Therefore, the master regression
function approximately interpolates the data (Anthony & Bartlett, 1999). Better bounds
can be proved when EXPLEV is run in stages, with the maximum residual reduced by a
constant factor each stage. Other variations on EXPLEV, including one appropriate for base
regressors, are also discussed.

Recall that the master function is F =
∑

t αt ft where αt and ft are the values computed at
iteration t . With additional assumptions on the base regressor we can bound

∑
t αt and prove

(ε, δ)-style bounds for the generalization error of the master regression function (assuming
the sample was drawn IID). For SQUARELEV.R, we require that the standard deviation of
f is not too much smaller than the standard deviation of the ỹ values. We truncate large
descent steps for EXPLEV and its staged version.

The remainder of the paper is organized as follows. The following section gives a brief
overview of related work and contrasts the classification and regression settings. In Section 3
we give our methodology and describe our algorithms and their performance bounds.
Section 4 contains the formal statements and proofs of our main results. We describe exper-
iments validating our assumptions and theoretical bounds on the sample error in Section 5
and concluding remarks appear in Section 6.

2. Relation to other work

2.1. Classification

Leveraging techniques are ensemble methods that work by repeatedly calling a simple
(or base) learning method on modified samples to obtain different base rules that are com-
bined into a master rule. In this way leveraging methods attempt to produce a master rule that
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is better than the base components. Leveraging methods include ARCing (Breiman, 1998,
1999), Bagging (Breiman, 1996), and Boosting (Schapire, 1992; Freund, 1995; Freund &
Schapire, 1997; Freund, 1999; Friedman, Hastie, & Tibshirani, 2000; Duffy & Helmbold,
2000). Leveraging for classification has received considerable attention (Freund & Schapire,
1997; Breiman, 1996; Freund, 1995; Bauer & Kohavi, 1999; Quinlan, 1996; Freund &
Schapire, 1996; Schapire & Singer, 1999; Rätsch, Onoda, & Müller, 2001; Mason et al.,
2000) and it has been observed that many of these algorithms perform an approximate gradi-
ent descent of some potential (Breiman, 1999; Rätsch, Onoda, & Müller, 2001; Friedman,
Hastie, & Tibshirani, 2000; Duffy & Helmbold, 1999; Mason et al., 2000). Given this
observation it is possible to derive new leveraging algorithms by choosing a new potential.

The most successful gradient descent leveraging method is Freund and Schapire’s
Adaboost (Freund & Schapire, 1997) algorithm for classification. In addition to its empiri-
cal success (Bauer & Kohavi, 1999; Quinlan, 1996; Freund & Schapire, 1996), AdaBoost
has strong theoretical guarantees (Freund & Schapire, 1997; Schapire et al., 1998) with rea-
sonably weak assumptions on the base learners. Since we concentrate on deriving gradient
descent leveraging algorithms for regression with similar guarantees, we first review some
of the relevant concepts for classification.

In the (strong) PAC setting proposed by Valiant (1984), the data is drawn IID from an
unknown distribution P on a domain X and labeled according to a concept from some
known class. The learning algorithm is given accuracy and confidence requirements, and
must output an accurate enough hypothesis (with respect to the same distribution P) with
at least the given confidence, regardless of the particular target concept and distribution P .
Efficient PAC learning algorithms are required to run in time polynomial in the parameters.

Weak PAC learning is like strong PAC learning, but the algorithm need only work for some
particular accuracy and confidence, rather than all accuracies and confidences. Kearns and
Valiant (1994) introduced weak PAC learning and asked if weak and strong PAC learning
are equivalent. This question was answered in the affirmative by Schapire in his thesis
(Schapire, 1992). See Kearns and Vazirani’s book (Kearns & Vazirani, 1994) for a more
detailed treatment of PAC learning.

An algorithm has the PAC boosting property if it can convert a weak PAC learner into a
strong PAC learner. Freund and Schapire (1997) show that AdaBoost has the PAC boosting
property. Of the many leveraging algorithms for classification, only a few are known to
have the PAC boosting property (Duffy & Helmbold, 2000; Freund, 1995; 1999; Freund &
Schapire, 1997; Schapire, 1992; Schapire & Singer, 1999).

Requiring a weak PAC learner to perform well with respect to an arbitrary distribution
allows it to be manipulated by modifying the distribution P . By careful modification of the
distribution a PAC boosting algorithm can convert a weak PAC learner into a strong PAC
learner. The PAC model balances this requirement that the algorithm perform well with
respect to an arbitrary distribution, with an assumption that the labels are consistent with a
concept from some known class. This consistency assumption is weakened in the agnostic
setting, where the algorithm has to obtain a hypothesis that performs competitively with the
best concept from a fixed class.2

The PAC boosting results rely on some strong assumptions: that the data is labeled
consistently with a concept from some known concept class and that a weak PAC learner for
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the problem is available. When these assumptions hold, algorithms with the PAC boosting
property will efficiently leverage any weak PAC learner to obtain a hypothesis that is
arbitrarily good. These assumptions may not hold for real world problems. However, PAC
boosting algorithms often perform well in practice (Bauer & Kohavi, 1999; Quinlan, 1996;
Freund & Schapire, 1996). To understand this one may take a more pragmatic view of the
PAC boosting property. A boosting algorithm leverages the properties of the base learner
to which it is applied. Pragmatically, this means that if the base learner behaves well on
the given problem then the boosting algorithm will be able to efficiently leverage this
performance. In practice, many of the bounds are of the form: if the base learner behaves
reasonably well, then the master hypothesis will improve by a bounded amount. We take
this more pragmatic view and use the term leveraging algorithm for an algorithm that can
efficiently and effectively improve the performance of a base learner. Our theoretical results
follow the PAC model, making broad intuitive assumptions about base learners to show
general results for our leveraging algorithms. Although these assumptions may not hold in
all cases, our bounds give guarantees whenever the base learner behaves appropriately.

2.2. Regression

Although leveraging for regression has not received nearly as much attention as leveraging
for classification, there is some work examining gradient descent leveraging algorithms in
the regression context.

The AdaBoost.R algorithm (Freund & Schapire, 1997) attacks the regression problem
by reducing it to a classification problem. To fit a set of (x, y) pairs with a regression
function, where each y ∈ [−1, 1], AdaBoost.R converts each (xi , yi ) regression example
into an infinite set of ((xi , z), ỹi ) pairs, where z ∈ [−1, 1] and ỹi = sign(yi − z). The base
regressor is given a distribution D over (xi , z) pairs and must return a function f (x) such that
its weighted “error”

∑
i |
∫ f (xi )

yi
D(xi , z) dz| is less than 1/2. Although experimental work

shows that algorithms related to AdaBoost.R (H, 1997; Ridgeway, Madigan, & Richardson,
1999; Bertoni, Campadelli, & Parodi, 1997) can be effective, it suffers from two drawbacks.

First, it expands each instance in the regression sample into many classification instances.
Although the integral above is piecewise linear, the number of different pieces can grow
linearly in the number of boosting iterations.

More seriously, the “error” function that the base regressor should be minimizing is
not (except for the first iteration) a standard loss function. Furthermore, the loss function
changes from iteration to iteration and even differs between examples on the same itera-
tion. Therefore, it is difficult to determine if a particular base regressor is appropriate for
AdaBoost.R.

Recently, Friedman has explored regression using the gradient descent approach (Fried-
man, 1999a). Each iteration, Friedman’s master algorithm constructs ỹi -values for each
data-point xi equal to the (negative) gradient of the loss of its current master hypothesis
on xi . The base learner then finds a function in a class F minimizing the squared error
on this constructed sample. Friedman applies this technique to several loss functions, and
has performed experiments demonstrating its usefulness, but does not present analytical
bounds.
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Friedman’s algorithm for the square-loss is closely related to Lee, Bartlett, and
Williamson’s earlier Constructive Algorithm for regression (Lee, Bartlett, & Williamson,
1995) which in turn is an extension of results of Jones (1992) and Barron (1993). Lee,
Bartlett, and Williamson prove that the Constructive algorithm is an efficient and effective
learning technique when the base learner returns a function in F approximately minimizing
the squared error on the modified sample. These algorithms are very similar to both our
SQUARELEV.R and SQUARELEV.C algorithms.

In independent work, Rätsch, Onoda, and Müller (2000) relate boosting algorithms to
barrier methods from linear programming and use that viewpoint to derive new leveraging
algorithms. They prove a general asymptotic convergence result for such algorithms when
applied to a finite base hypothesis class. Although arrived at from a different direction, their
ε-boost algorithm is very similar to our EXPITERLEV algorithm.

AdaBoost and AdaBoost.R only require that the base hypotheses have a slight edge. In
contrast, almost all of the work on leveraging for regression assumes that the function re-
turned by the base regressor approximately minimizes the error over its function class. Here,
we analyze the effectiveness of gradient descent procedures when the base regressor returns
hypotheses that are only slightly correlated with the labels on the sample. In particular, we
consider natural potential functions and determine sufficient properties of the base regressor
so that the resulting gradient descent procedure produces good master regression functions.

2.3. Sample relabeling

In the classification setting, leveraging algorithms are able to extract useful functions from
the base learner by manipulating the distribution over the sample, and do not need to modify
the sample itself. If the base learner returns functions with small loss (classification error
rate on the weighted sample less than 1/2), then several (Schapire, 1992; Freund, 1995;
Freund & Schapire, 1997; Friedman, Hastie, & Tibshirani, 2000; Freund, 1999; Duffy &
Helmbold, 2000) leveraging algorithms can rapidly produce a master function that correctly
classifies the entire sample.

A key difference between leveraging for regression and leveraging for classification is
given by the following observation:

Remark 2.1. Unlike leveraging classifiers, leveraging regressors cannot always force the
base regressor to output a useful function by simply modifying the distribution over the
sample.

To see this, consider the regression problem with a continuous loss function L mapping
prediction-label pairs to the non-negative reals. Let f be a function having the same modest
loss on every instance. Since changing the distribution on the sample does not change the
expected loss of f , the base learner can return this same f each iteration. Of course if f
consistently underestimates (or overestimates) the y-values in the sample, then the master
can shift or scale f and decrease the average loss. However, for many losses (such as the
square loss) it is easy to construct (sample, f ) pairs where neither shifting nor scaling
reduces the loss.
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The confidence rated prediction setting of Schapire and Singer (1999) (where each
yi ∈ {±1} and f (x)∈ [−1, +1]) does not have this problem: if the “average loss”
(1−
∑

D(xi )yi f (xi ))/2 is less than 1/2, and the loss on each example (1− yi f (xi ))/2 is
the same, then each yi f (xi ) > 0 and thresholding f gives a perfect classifier on the sample.
It is this thresholding property of classification that makes manipulating the distribution
sufficient for boosting.

We know of three approaches to modifying the sample for gradient descent leveraging
algorithms in the regression setting. Which approach is best depends on the properties of
the base regressor and the potential function. The AdaBoost.R algorithm manipulates the
loss function as well as the distribution over the sample, but leaves the labels unchanged.
Friedman’s Gradient Boost algorithm (Friedman, 1999b) modifies the sample (by setting the
labels to the negative gradient) while keeping the distribution constant. A third approach
is used by two of the algorithms presented here. Each modified label is the sign of the
corresponding component of the (negative) gradient while the distribution is proportional
to the magnitudes of the gradient. This third approach uses ±1 labels, and thus can use
base regressors that solve classification problems. When using a base classifier, the master
algorithm has the base method output a classifier that tends to separate those sample points
on which the current master function is too high from those where it is too low.

Recall that the PAC setting assumes that the sample is labeled consistently with some
hypothesis in a base hypothesis class. When the base learners are PAC weak learners, they
return hypotheses with average classification error on the sample less than 1/2 regardless
of the distribution given. As random guessing has average classification error 1/2, it is
plausible that the base learner can do slightly better (when the labeling function comes
from the known class). However, if the sample is modified, it is no longer clear that the
labels are consistent with any hypothesis in the class, and the weak learner may not have
any edge.

In general, no useful function class contains hypotheses consistent with every arbitrary
relabeling of a large sample. Our methods relabel the sample according to the residuals—the
modified labels are either the signs of the residuals or the residuals themselves. To justify
this modification of the sample, we now show that for many function classes this relabeling
is benign.

Remark 2.2. Assume that the sample is labeled by a linear combination of functions from
a class F of regression functions that is closed under negation. If the base regressor returns
functions that are in F (or linear combinations of functions in F ) then any modified sample
where the ỹ values are the residuals is also consistent with some linear combination of
functions in F .

Proof: Let g be the function labeling the data. We assume that the master hypothesis F
is a linear combination of base hypotheses, and thus is a linear combination of functions in
F . The residuals r(xi ) = g(xi ) − F(xi ) are therefore consistent with the function g − F ,
which is a linear combination of functions in F . !

This remark holds only when the ỹ values are the residuals r, however, several of our
algorithms use ỹ values that are the sign of the residuals and classes of base functions
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mapping to {−1, 1}. In this case, the modified sample will not generally be consistent with
any linear combination of functions from the base class. However, for all of our algorithms
the edge of a base function f is positive if r · f > 0. If the sample is labeled consistently
with a linear combination of base functions, then while any residuals are larger than zero,
there is always a function f ∈ F with positive edge. This can be seen by examining the
positive quantity (g−F) · (g−F). By writing the second g−F as a sum of base functions,
it is clear that for at least one base function f , (g−F) · f > 0. So even when the ỹ’s are the
signs of the residuals, there is still a function with an edge available to the base learner.

A simple example of such a class is the finite class of monomials of degree up to k
with coefficients in {−1, 1}. The class of linear combinations of these functions has finite
pseudo-dimension k + 1. Therefore, Remark 2.2 shows that with a base learner using this
finite base hypothesis class, our relabeling methods create samples that are consistent with
a polynomial and there will always be a monomial with a positive edge.

Although this argument justifies the assumption that the base learners can produce func-
tions having positive edges on the relabeled sample, it does not guarantee that these edges
remain bounded away from zero. However, our experimental results in Section 5 indicate
that the edges often remain sufficiently large for the master regressor to make good progress.

3. Methodology and algorithms

In this section we describe our methodology and apply it to generate three different lever-
aging algorithms.

Our methodology begins by establishing the criteria for successful generalization, such
as minimizing the expected squared error or maximizing the probability that the prediction
is within an error tolerance of the true value. Once these criteria are known, we can then
determine what behavior on the sample leads to the desired generalization performance.
Anthony and Bartlett’s book (Anthony & Bartlett, 1999) is a useful reference for theorems
bounding the generalization error in terms of the performance on a sample.

The key step in our methodology is the construction of a “potential” that measures how
close the current performance on the sample is to that desired. It is natural for the potential to
be a non-negative function of the residual vector, r (recall that ri = yi − F(xi ), the amount
by which the master function must be increased in order to perfectly predict the label yi ),
and go to zero as r goes to the zero vector. It will soon become clear that the potential must
be chosen carefully so that it has several other properties.

The master algorithm attempts to reduce the residuals by adding in a multiple of the base
hypothesis at each iteration. In essence, the master algorithm is performing an approximate
gradient descent on the potential under the constraint that each descent step must be in the
direction of the current base hypothesis (see Duffy & Helmbold, 1999 for further geometric
intuition). Therefore, the current base hypothesis must be correlated with the direction of
steepest descent—the negative gradient of the potential, with respect to the master function,
on the sample.

The master algorithm must manipulate the sample so that any hypothesis with an “edge”
is correlated with the negative gradient of the potential. It must also find a step size such that
each iteration the potential decreases by a multiplicative factor depending on the amount of
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“edge” in the base hypothesis. The way the modified sample is constructed, the potential
function, the way the edge is measured, and the choice of step size must all be compatible in
order to obtain this multiplicative decrease. Although any measure of “edge” can be used,
we will use natural “edges” that are reasonable measures of success for a base regression
algorithm.

The generalization bounds we are aware of require that the master function not only
approach perfection on the sample, but also be relatively simple. The exponential decrease
in the potential implies that relatively few iterations are needed before the performance on
the sample is acceptable. However, the generalization bounds also require that the step sizes
(i.e. coefficients multiplying the base hypotheses) are also small enough. Therefore we must
show that our algorithms are not only computationally efficient but are also efficient with
respect to the coefficients in the linear combinations produced. Letting the algorithm take
a full gradient step might produce a coefficient that is prohibitively large and varying the
size of the gradient steps taken can lead to a trade off between the number of iterations to
obtain a good regressor and the complexity of that regressor. This trade off is difficult to
optimize, and our results do not require such an optimization.

This amortized analysis of leveraging algorithms is reminiscent of that used in the clas-
sification setting (see Freund & Schapire, 1997; Duffy & Helmbold, 2000 for examples).
First, the change in potential for a single iteration is bounded, leading to a bound on the
potential after several iterations. Second, the bound on the potential is used to obtain a bound
on the sample error. Third, bounds on the size of the resulting combined hypothesis are used
to obtain generalization error bounds. For classification the “size” of the master hypothesis
is usually measured by the number of base hypotheses, without worrying about the size
of the coefficients. Note that the magnitude of the coefficients in the linear combination
does appear in the margin analyses of boosting algorithms (Schapire et al., 1998; Duffy &
Helmbold, 2000) for classification. This hints that the classification setting might have an
iteration/complexity tradeoff like the regression results here.

To prove our bounds on the generalization error we make considerable use of results from
statistical learning theory. These results rely on several measures of the complexity of a class
of functions, i.e. the fat shattering dimension fat( ), the pseudo-dimension Pdim( ) and the
(one- and two-norm) covering numbers N1( ),N2( ) (see Anthony & Bartlett, 1999 for a
thorough discussion of these quantities). We use these quantities without definition through-
out the paper and note that they can be thought of as generalizations of the VC-dimension.

In the remainder of this section we will state our three master algorithms and (informally)
give their PAC-style bounds. The formal theorem statements and proofs appear in Section 4.
We will assume that the base function class F is closed under negation, so f ∈ F ⇒ − f ∈
F , and that F contains the zero function.

3.1. Regression with squared error

In this subsection we assume that the generalization criterion is to minimize the expected
squared error. Uniform convergence results imply that if the master function is in some
relatively simple class and has small empirical squared error, then it will have small gener-
alization error as well (see e.g. the treatment in Anthony & Bartlett, 1999).
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Definition 3.1. Given a real-valued function f and a sample S = {(x1, y1), (x2, y2), . . . ,

(xm, ym)} in (X ×,)m , the sample error of f on S, denoted êrS( f ), is

êrS( f ) = 1
m

m∑

i=1

(yi − f (xi ))
2. (1)

Definition 3.2 (Anthony & Bartlett, 1999). Let P be a probability distribution on X ×,.
The (generalization) error of a function f : X → , with respect to P is

erP( f ) = E(y − f (x))2

where the expectation is with respect to a random (x, y) drawn according to P .

We now describe SQUARELEV.R and SQUARELEV.C, two gradient descent leverag-
ing algorithms for regression that produce hypotheses with low expected squared error.
SQUARELEV.R uses a regression algorithm as its base learner while SQUARELEV.C is suit-
able for use with a classification algorithm. These algorithms modify the sample and distri-
bution in different ways. Despite this, the convergence bounds and techniques are similar
for both algorithms. We present SQUARELEV.R in detail, and show (in Section 4.1) that it
efficiently achieves arbitrarily small squared error on the sample when using an appropriate
base learner. We also show that the resulting hypothesis is simple enough that, with high
probability, it achieves small expected squared error on the entire domain. This requires a
bound on the complexity of the function class M in which the master functions lie. Since
the master function is a linear combination of base functions, the complexity of M depends
on the complexity of the base function class F and the size of the coefficients in the lin-
ear combination. As mentioned before, bounding the size of the coefficients in the linear
combination is a key step in the analysis of these algorithms.

SQUARELEV.R. The potential associated with SQUARELEV.R is the variance of the
residuals,

Pvar = ‖r− r̄‖2
2, (2)

where r is the m-vector of residuals defined by ri = yi − F(xi ), r̄ = 1
m

∑m
i=1 ri , and r̄ is

the m-vector with all components equal to r̄ . Notice that any F(x) can easily be shifted to
F̃(x) = F(x) + 1

m

∑m
i=1(yi − F(xi )) such that êrS(F̃) is 1

m times the potential of F .
Algorithm SQUARELEV.R (stated formally in figure 1 ) gives the base regressor a modified

sample {(xi , ỹi )} with ỹi = ri − r̄ (proportional to the negative gradient of Pvar with respect
to F), and the uniform distribution over the modified sample. For this algorithm we define
the edge of the returned base function f as

ε = ((r− r̄) · (f− f̄))
‖r− r̄‖2‖f− f̄‖2

= ((r− r̄) · (f− f̄))
σrσf

(3)
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Figure 1. The SQUARELEV.R algorithm.

where σr and σf are the standard deviations of the respective vectors and f̄ is the m-vector
with all components equal to 1

m

∑m
i=1 f (xi ). This edge is just the correlation coefficient

between f and r (or equivalently, ỹ). Note that this edge measure is self-normalized in the
sense that the edges of f and any positive multiple of f are the same. Any base function
with a positive edge can be used to reduce the potential of the master function. In particular,
the value α is chosen to minimize the potential of the new master function.

Theorem 4.1 from the next section shows that each iteration the potential decreases by
a factor of (1− ε2), where ε is the edge (3) of the base function f . Given the relationship
between the potential Pvar and êrS(F̃), this implies that each iteration the mean squared
error of F̃ decreases by a multiplicative factor that depends on the edge of the base learner.
Assuming a lower bound εmin on the edge of the base learner will allow us to prove that,
for any ρ ∈ ,+, after

O
(

ln(1/ρ)

ε2
min

)

iterations the sample error of F̃ is at most ρ. Furthermore, we can also show that the sum
of the coefficients is bounded by a similar quantity, assuming that the variance of the base
function at each iteration is not too much less than the variance of the corresponding residual.

Note that the number of iterations before êrS(F̃) ≤ ρ and the bound on the size of the
coefficients are independent of the number of examples m. This is because êrS(F̃) equals
the potential/m, and the potential decreases by at least a constant factor each iteration.
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Using this iteration bound and bounds on the complexity of the master function produced
(derived from the bounds on T and

∑T
t=1 αt ) we can obtain obtain the following PAC-style

result.

Corollary 3.3. Assume that data is drawn IID from a distribution P on X× [−B
2 , B

2 ], that
the base regression functions f ∈F returned by the base learner map to [−1, +1] and have
edge ε > εmin, and ‖r−r̄‖2

‖f−f̄‖2
≤ c, that the base learner runs in time polynomial in m, 1/ε, and

that Pdim(F) is finite. Then ∃m(ρ, δ, 1/εmin) polynomial in 1/ρ, 1/δ, 1/εmin such that for
all ρ ∈ ,+, δ, εmin ∈ (0, 1), with probability 1− δ, SQUARELEV.R produces a hypothesis
F, in time polynomial in 1/ρ, 1/δ, 1/εmin, with erP < ρ when trained on a sample of size
m(ρ, δ, 1/εmin).

Corollary 3.3 shows that SQUARELEV.R is an efficient regression algorithm for obtain-
ing functions with arbitrarily small squared error. It follows from Theorem 4.3 which is
somewhat more precise.

The conditions placed on the base learner are worth examining further. The lower bound
on the edge of the base learner εmin is similar to that used in the GeoLev (Duffy & Helmbold,
1999) algorithm and is analogous to that used by AdaBoost. Since the edge of the base learner
is simply the correlation coefficient between the residuals and the predictions of the base
function, it seems reasonable to assume that it is larger than zero. Note that the edge (or
correlation) is likely to go to zero as the number of iterations go to infinity. However, the
proof of the above result requires only that the base hypotheses have edge at least εmin for
finitely many iterations. If the edge as a function of the iteration t is '(1/

√
t) then a suitable

εmin can be found.
In addition we require the condition that

‖r− r̄‖2

‖f− f̄‖2
≤ c, or equivalently

σr

σf
≤ c.

This condition requires that the base function does not have much smaller variance over
the sample than the residuals. In the extreme case where the base function has σf = 0, no
progress can be made as f is constant and the residuals would all be modified by exactly
the same amount. Recall that the range of f is [−1, 1], this assumption also requires that
the range of f on the sample is not much smaller than its entire range. The base function
f could have poor generalization error if it has much smaller variation on the sample than
on the entire domain and so its addition may adversely affect the generalization error of the
combined function F .

SQUARELEV.C. We define SQUARELEV.C to be the gradient descent leveraging algorithm
using the potential

Psq = ‖y− F‖2
2 = ‖r‖2

2. (4)

Note that the negative gradient of Psq w.r.t. F is 2r.
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SQUARELEV.C mimics SQUARELEV.R with the following modifications. The modified
labels are ±1-valued: ỹi = sign(ri ). The distribution D(xi ) sent to the base regressor is
recomputed each iteration and is proportional to |ri | (and thus proportional to the magnitude
of the gradient with respect to F).

For SQUARELEV.C, we define the edge of the base regressor as:

ε =
∑m

i=1 D(xi )ỹi f (xi )

‖D‖2‖f‖2
= (r · f)
‖r‖2‖f‖2

. (5)

The value αt = εt‖r‖2
‖f‖2

= (r·f)
‖f‖2

2
.

Note that since SQUARELEV.C uses ±1-valued labels, it may work well when the base
functions are classifiers with range {−1, +1}. Theorem 4.2 shows that SQUARELEV.C de-
creases its potential by a factor of (1− ε2) each iteration.

The potential and suitable base learners for SQUARELEV.C are closely related to those used
by the GeoLev (Duffy & Helmbold, 1999) algorithm. In particular, base hypotheses which
tend to “abstain” on a large portion of the sample seem appropriate for these algorithms
as the edge (5) tends to increase if the base learner effectively trades off abstentions for
decreased error.

3.2. An AdaBoost-like algorithm

An alternative goal for regression is to have almost-uniformly good approximation to the
true regression function. One way to achieve this is to obtain a simple function that has
small residuals at almost every point in a sufficiently large sample. Anthony and Bartlett
(1999) call this approach “generalization from approximate interpolation.”

Definition 3.4 (Anthony & Bartlett, 1999). Suppose thatF is a class of functions mapping
from a set X to the interval [0, 1]. Then F generalizes from approximate interpolation if for
any ρ, δ ∈ (0, 1), η, γ ∈ ,+, there is m0(ρ, δ, η, γ ) such that for m ≥ m0(ρ, δ, η, γ ), for
any probability distribution P on X , and any function g : X → [0, 1], the following holds:
with probability at least 1− δ, if x = (x1, x2, . . . , xm) ∈ Pm , then for any f ∈ F satisfying
| f (xi )− g(xi )| < η for i = 1, 2, . . . , m, we have

P{x : | f (x)− g(x)| < η + γ } > 1− ρ . (6)

Basically, a function class generalizes from approximate interpolation if there is a sample
size such that whenever a function in the class is within η on every point in a sample of that
size, then it will be (with high confidence) within η + γ on (almost) the whole domain. Since
this property provides a uniform bound on almost all of the input domain, it is considerably
stronger in nature than a bound on the expected squared error.

The notion of approximate interpolation is closely related to the ε-insensitive loss used
in support vector machine regression (Vapnik, 1998).

In this section we introduce the EXPLEV algorithm, which uses an exponential potential
related to the one used by AdaBoost (Freund & Schapire, 1997). The AdaBoost algorithm
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pushes all examples to have positive margin. In the regression setting, the EXPLEV algorithm
pushes the examples to have small residuals. We show that this is possible and, given certain
assumptions on the class of base hypotheses, that the residuals are also small on a large
portion of unseen examples.

To obtain a uniformly good approximation it is desirable to decrease the magnitude
of the largest residual, so one possible potential is maxi |ri |. However, the discontinuous
derivatives make it difficult to analyze descent algorithms using this potential. The EXPLEV

algorithm instead uses the two-sided potential

Pexp =
m∑

i=1

(esri + e−sri − 2), (7)

where s is a scaling factor. When |sri | is large, its contribution to Pexp behaves like
exp(s maxi |ri |). Pexp is also non-negative, and zero only when each F(xi ) = yi .

For a single example, Pexp increases exponentially with the magnitude of the residual
while having a relatively flat (quadratic rather than exponential) region around 0. The scalar
s is chosen so that this flat region corresponds to the region of acceptable approximation.
The exponential regions have a similar effect to the exponential potential used by AdaBoost:
the example with the largest potential tends to have its potential decreased the most.

The components of the gradient (wrt. F) are

∇i Pexp = ∂ Pexp

∂ F(xi )
= −s exp(sri ) + s exp(−sri ). (8)

These are negative when ri = yi − Fi is positive (increasing Fi decreases ri and decreases
the potential), and positive when ri is negative.

For EXPLEV we assume that the base hypotheses have range [−1, +1], and that the goal
is to find a master hypothesis F(x) =

∑
αt ft (x) such that each |ri | = |yi − F(xi )| ≤ η for

some given η. Here we find the scaling factor s = ln(m)/η most convenient.
Like SQUARELEV.C, each iteration the distribution D and the modified labels that EXPLEV

gives to the base regressor follow from the potential. In particular,

D(xi ) = |∇i Pexp|
‖∇Pexp‖1

(9)

ỹi = sign(ri ) = −sign(∇i Pexp). (10)

The base regressor could be either a classifier (returning a {−1, 1}-valued f ) or a regressor
(where the returned f gives values in [−1, +1]). In either case, we define the edge ε of a
base hypothesis f as

ε =
m∑

i=1

D(xi )ỹi f (xi ). (11)

This is the same definition of edge used in the confidence rated version of AdaBoost
(Schapire & Singer, 1999). The main difference between the base learners used here and
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those used by AdaBoost is that here the base learner must perform well with respect to
a relabeled sample. Although, this may not be possible in general it seems reasonable in
many situations (see the discussion in Section 2.3).

The ε defined in (11) is not “self normalizing;” scaling f also scales the edge. We could
normalize it by dividing through by ‖f‖∞, but this is equivalent to our assumption that
each f (xi ) ∈ [−1, 1]. Although the two-norm was used for normalization in the algorithms
for minimizing the squared error, the infinity norm is more convenient for minimizing the
maximum residual. Duffy and Helmbold (1999) discuss the choice of norms for the edge
in the context of classification.

In addition to the desired residual bound η, EXPLEV also takes a second parameter, εmax.
This second parameter is used to regularize the algorithm by bounding the size of the steps
taken. The algorithm is stated formally in figure 2.

Note that EXPLEV sets ε̂ to the minimum of the ε defined in (11) and the parameter εmax.
Theorem 4.10 shows that EXPLEV decreases its potential by at least a factor of (1 − ε̂2

6 )

each iteration (unless the potential is already very small).
Using this bound and assuming a lower bound εmin on the edge of the base hypotheses we

can prove that EXPLEV obtains a function F such that all of the residuals are small within a

Figure 2. The EXPLEV algorithm. Recall that Pexp =
∑m

i=1(e
sri + e−sri − 2).
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number of iterations that is logarithmic in the sample size m and linear in 1/η. In particular,
Theorem 4.11 shows that if each yi ∈ [−B, B] then |yi − F(xi )| < η within

T =
⌈

ln(m) B
η

+ 1

ε2
min/6

⌉

iterations, and

T∑

t=1

αt ≤ (2η + B)
ln 1+εmax

1−εmax

ε2
min/3

.

It is worth examining this result in a little more detail. Despite the linear dependence on
1/η in the bound on T , the bound on the sum of the α values actually decreases (slightly) as
η is reduced. As the required accuracy is increased the individual step sizes shrink and the
bound on the length of the total path traversed by the algorithm (the sum of the step sizes)
actually drops slightly. The η parameter causes the algorithm to approximate the steepest
descent path more and more closely as the required accuracy increases. This illustrates an
interesting tradeoff between the number of iterations and the size of the coefficients (small
coefficients tend to give better generalization error). Note the individual α values chosen
by the algorithm depend linearly on η.

Although we can prove a PAC-style result for EXPLEV, we obtain better bounds using
one of the modifications discussed below.

Modifications to EXPLEV. There are several modifications to EXPLEV that have the poten-
tial of improving its performance. We discuss three possible modifications here.

From the proof of Theorem 4.10 one can see that our choice of α is convenient for the
analysis, but is generally not the step size that minimizes the potential. Therefore an obvious
modification to EXPLEV performs a line search to find the best step size rather than using
the explicit value convenient for our proofs. (A similar line search is suggested by Schapire
and Singer for their confidence rated prediction version of AdaBoost (Schapire & Singer,
1999)).

If the base learning algorithm performs regression rather than classification, then the fol-
lowing variant of EXPLEV might be preferable. This variant sets ỹi = s exp(sri )−s exp(−sri )

and keeps the distribution uniform over the modified sample. When the edge is defined3

to be
∑m

i=1 ỹi f (xi )

‖ỹ‖1‖f‖∞ , then the same analysis used for EXPLEV also applies to this variant (with
only a minor modification to the algebra in the proof of Theorem 4.10).

Our third variant runs EXPLEV in stages with different η parameters. Recall that our time
bound for EXPLEV depends linearly on η when a single η parameter is used. We can obtain a
faster algorithm by using a sequence of exponentially decreasing η parameters, decreasing
η by a factor of z after each stage. In what follows we examine the case where the target
sample approximation is reduced by a constant factor each stage and call this algorithm
EXPITERLEV (presented formally in figure 3).

Theorem 4.12 shows that if the y values are in [−B, B] then (with z set to 2) after
T = 2 18 ln(m)

ε2
min
32ln(B/η′)3 calls of the base learning algorithm the error on the sample points
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Figure 3. The EXPITERLEV algorithm.

is at most η′. Furthermore, the same theorem shows that the sum of the coefficients in the
master function is at most 24B

ε2
min

ln( 1+εmax
1−εmax

).
Since the master function class M consists of functions which are linear combinations of

functions from F , this gives us a bound on the complexity of M in terms of the complexity
of the class F from which the base regression functions are drawn. Using this bound on the
complexity of M we can obtain the following PAC-style result from Theorem 4.13.

Corollary 3.5. Assume that data is drawn IID from a distribution P on X with y = g(x)

for some function g : X → [−B, B] , that the base regression functions f ∈ F returned by
the base learner map to [−1, +1] and satisfy ε > εmin, that the base learner runs in time
polynomial in m, 1/ε, and that Pdim(F) is finite. Then ∃m(ρ, δ, η, γ , εmin) a polynomial
in 1/ρ, 1/δ, 1/η, 1/γ such that the following holds for all ρ, δ, εmin ∈ (0, 1), η, γ ∈ ,+ :
with probability at least 1 − δ, if trained on a sample x = (x1, x2, . . . , xm) ∈ Pm, then
EXPITERLEV (with parameters s = ln(m)/η and εmax ≥ εmin) produces a hypothesis F, in
time polynomial in 1/ρ, 1/δ, 1/η, 1/γ , εmin, satisfying

P{x : |F(x)− g(x)| < η + γ } > 1− ρ

for all m > m(ρ, δ, η, γ ).

This shows that EXPITERLEV is an efficient regression algorithm for obtaining functions
that interpolate a target to arbitrarily high accuracy. A similar result can be proved for
the unmodified EXPLEV algorithm using the weaker results of Theorem 4.11 instead of
Theorem 4.12.

4. Proofs of main results

In this section we prove the main results described in the previous section. These proofs
proceed similarly to the original proofs for AdaBoost (Freund & Schapire, 1997). We begin
by using an amortized analysis on the potential to bound the time required to achieve low
error on the sample. This is done in two steps, the first bounds the decrease in the potential in
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a single iteration, the second iterates this bound. We then bound the size of the coefficients
of the final hypothesis. Using these bounds we can bound the generalization error using
standard results from statistical learning theory (Anthony & Bartlett, 1999).

4.1. Performance of SQUARELEV.R

The following theorem shows how the potential (2) decreases each iteration. The value of
α used in the proof minimizes the potential of F + αf.

Theorem 4.1. If ε is the edge (3) of the base function f in an iteration of SQUARELEV.R
then the potential Pvar decreases by a factor of (1− ε2) during the iteration.

Proof: Let Pvar, F , and r be the potential, master function, and residual vector at the start
of the iteration and P ′var, F ′ = F + α f , and r′ = r− αf be the corresponding quantities at
the end of the iteration. Recall that this potential Pvar = ‖r − r̄‖2 = (r − r̄) · (r − r̄) and
this edge ε = (r−r̄)·(f−f̄)

‖r−r̄‖2‖f−f̄‖2
.

P ′var = ‖r′ − r̄′‖2
2

= ‖(r− r̄)− α(f− f̄)‖2
2

= ‖r− r̄‖2
2 − 2α((r− r̄) · (f− f̄)) + α2‖f− f̄‖2

2

= Pvar − 2α((r− r̄) · (f− f̄)) + α2‖(f− f̄)‖2
2

= Pvar −
((r− r̄) · (f− f̄))2

‖f− f̄‖2
2

(using α = ε‖r−r̄‖2

‖f−f̄‖2
= ((r−r̄)·(f−f̄))

‖f−f̄‖2
2

)

= Pvar

(

1− ((r− r̄) · (f− f̄))2

‖r− r̄‖2
2‖f− f̄‖2

2

)

= Pvar(1− ε2). !

The next theorem iterates this result to bound the number of iterations before êrS(F̃) ≤ ρ.

Theorem 4.2. Assume that each yi ∈ [− B
2 , B

2 ]. If the edges of the weak hypotheses used
by SQUARELEV.R are bounded below by εmin > 0 then for all ρ > 0 after

T =
⌈

ln
( B2

4ρ

)

ε2
min

⌉

iterations the function F̃T has sample error êrS(F̃T ) ≤ ρ. If in addition ‖r−r̄‖2

‖f−f̄‖2
≤ c in every

iteration then

T∑

t=1

αt ≤ c

⌈
ln
( B2

4ρ

)

ε2
min

⌉

.
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Proof: Let Pvar,T (and rT , r̄T , FT ) be the potential (and residuals, average residual, master
function) at the end of iteration T . If Pvar,T ≤ mρ then

∑m
i=1(rT,i − r̄T )2 ≤ mρ and, for

F̃T (x) = FT (x) + 1
m

∑m
i=1(yi − FT (xi )), we have that êrS(F̃T ) ≤ ρ. The initial potential

is at most m(B/2)2 as Pvar ≤
∑m

i=1 r2
i and the initial ri ’s are bounded by B/2. Since the

potential decreases by at least (1− ε2
min) each iteration, the potential at the end of iteration

T is at most mB2(1− ε2
min)

T /4. Thus the sample error of F̃T (x) is at most ρ when

mB2(1− ε2
min

)T
/4 ≤ mρ

T ln
(
1− ε2

min

)
≤ ln
(

4ρ

B2

)

T ≥
ln
( B2

4ρ

)

ln
(

1
1−ε2

min

) .

Using the fact that ln( 1
1−ε2

min
) > ε2

min proves the first part of the theorem. On each iteration:

α = ε
‖r− r̄‖2

‖f− f̄‖2
≤ c.

Multiplying this bound by the bound on T gives the second part of the theorem. !

The previous theorem shows that SQUARELEV.R takes only polynomial time to obtain a
function having both small error on the sample and low complexity. We now derive a bound
on the generalization error of the master regression function.

Theorem 4.3. Assume that data is drawn IID from a distribution P on X × [− B
2 , B

2 ]
( for some domain X), F is a class of [−1, 1]-valued functions with pseudo-dimension
Pdim(F) = q, and that each iteration the base regressor returns an f ∈ F such that the
edge (3) of f is bounded below by εmin and ‖r−r̄‖2

‖f−f̄‖2
≤ c. Then there exists a constant A ≥ 0

such that, for all δ ∈ (0, 1) and ρ > 0, if SQUARELEV.R is applied to a random sample
(drawn IID from P) of size at least

m(ρ, δ) =
(

AK 4

ρ2

)(

ln
(

1
δ

)
+ Pdim(F)

⌈
K 4

ρ2

⌉
ln

(
K 8
⌈ K 4

ρ2

⌉

ρ3

))

where K = 2 max(c ln(B2/2ρ)

ε2
min

, B), then with probability at least 1 − δ the (shifted ) master

hypothesis F̃T after T = 2 ln( B2
2ρ

)

ε2
min
3 iterations has erP(F̃T ) < ρ.

Proof: Fix ρ and δ, and let S be an IID m ≥ m(ρ, δ) sample. After T = 2 ln( B2
2ρ

)

ε2
min
3 iterations

the sample error êrS(F̃T ) ≤ ρ
2 from Theorem 4.2. We must bound the probability that the

expected squared error is much larger than this. To use the standard theorems we must first
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scale the y values and final hypothesis so they lie in the interval [0, 1]. In particular, set
F ′(x) = F̃(x)

K + 1
2 and S′ = {(x1,

y1
K + 1

2 ), (x2,
y2
K + 1

2 ), . . . , (xm, ym
K + 1

2 )}. We use erP ′(F ′)
to denote the expected error E(( y

K + 1
2 )− F ′(x))2. We use M to denote the original class of

master functions F̃ and use M′ for the transformed class of functions to which F ′ belongs.
The following are equivalent for any F ′ ∈M′ and the corresponding F̃ ∈M:

|erP ′(F ′)− êrS′(F ′)| ≥ ρ∣∣∣∣∣E
(

y
K

+ 1
2
− F ′(x)

)2

− 1
m

m∑

i=1

(
yi

K
+ 1

2
− F ′(xi )

)2
∣∣∣∣∣ ≥ ρ

∣∣∣∣∣E (y − F̃(x))2 − 1
m

m∑

i=1

(yi − F̃(xi ))
2

∣∣∣∣∣ ≥ ρK2

|erP(F̃)− êrS(F̃)| ≥ ρK2.

So that

Pm
{
∃F ∈M : |erP(F)− êrS(F)| ≥ ρ

2

}

= Pm
{
∃F ′ ∈M′ : |erP ′(F ′)− êrS′(F ′)| ≥ ρ

2K 2

}

≤ 4N1

(
ρ

25 K 2
,M′, 2m

)
exp
(−ρ2m

27 K 4

)

≤ 4
(

28 K 4em
qρ

)q2 212 K 4

ρ2 3
exp
(−ρ2m

27 K 4

)
,

where the first inequality follows from Theorem 17.1 in Anthony and Bartlett (1999) and
the second from Lemma 6 and the fact that N1(ε,F, k) < N2(ε,F, k). This probability
will be less than δ if

ln
(

δ

4

)
> q
⌈

212 K 4

ρ2

⌉
ln
(

28 K 4em
ρq

)
−
(

ρ2m
27 K 4

)
, or

ρ2m
27 K 4

> ln
(

4
δ

)
+ q
⌈

212 K 4

ρ2

⌉
ln
(

28 K 4em
ρq

)
. (12)

We will now remove the m from the right-hand-side of (12). Since ln(a) ≤ ab + ln(1/b)−
1 ∀a, b > 0, we have ab ≥ ln(a) + ln(b) + 1 and so

mρ2

28 K 4q
⌈ 212 K 4

ρ2

⌉ ≥ ln(m) + ln

(
ρ2

28 K 4q
⌈ 212 K 4

ρ2

⌉

)

+ 1

mρ2

28 K 4
≥ q
⌈

212 K 4

ρ2

⌉
ln

(
mρ2

q
⌈ 212 K 4

ρ2

⌉
28 K 4

)

. (13)
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Subtracting (13) from (12) shows that the sample size m is large enough if

mρ2

28 K 4
≥ ln
(

4
δ

)
+ q
⌈

212 K 4

ρ2

⌉
ln

(
216eK 8

⌈ 212 K 4

ρ2

⌉

ρ3

)

as required. !

4.2. Performance of SQUARELEV.C

The analysis of SQUARELEV.C follows the same outline as that given for SQUARELEV.R.
Therefore we quickly derive the main results.

Theorem 4.4. If ε is the edge (5) of the base function f in an iteration of SQUARELEV.C
then the potential Psq decreases by a factor of (1− ε2) during the iteration.

Proof: Consider the change in potential for a single iteration, with primes indicating the
modified quantities at the end of the iteration. Recall that r = y − F, Psq = ‖r‖2

2, and
ε = (r · f)/‖r‖2‖f‖2.

P ′sq = ‖y− F′‖2
2

= ‖(y− F)− αf‖2
2

= Psq − 2α(r · f) + α2‖f‖2
2

= Psq −
(r · f)2

‖f‖2
2

using the minimizing α = (r · f)
‖f‖2

2

= Psq

(
1− (r · f)

‖r‖2
2‖f‖2

2

)

= Psq(1− ε2) . !

Theorem 4.5. Assume that each yi ∈ [−B
2 , B

2 ]. If the edges of the weak hypotheses used
by SQUARELEV.C are bounded below by εmin > 0 then for all ρ > 0 after

T =





ln
(

B2

4ρ

)

ε2
min





iterations the function FT has sample error êrS(FT ) ≤ ρ. If in addition ‖r‖2
‖f‖2

≤ c in every
iteration then

T∑

t=1

αt ≤ c





ln
(

B2

4ρ

)

ε2
min




.
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Proof: If Psq ≤ mρ then êrS ≤ ρ. Furthermore, since the initial potential is at most
m
( B

2

)2
and the potential decreases by at least (1− ε2

min) each iteration, the potential at the
end of iteration T is at most m B2(1 − ε2

min)
T/4. Thus the sample error of FT is at most ρ

when

m B2(1− ε2
min

)T
/4 ≤ mρ

T ln
(
1− ε2

min

)
≤ ln
(

4ρ

B2

)

T ≥
ln
(

B2

4ρ

)

ln
(

1
1−ε2

min

)

proving the first part of the theorem. For the second part, on each iteration:

α = ε
‖r‖2

‖f‖2
≤ c.

Multiplying this bound by T gives the second part. !

Theorem 4.6. Assume that data is drawn IID from a distribution P on X × [− B
2 , B

2 ]
( for some domain X), F is a class of [−1, 1]-valued functions with pseudo-dimension
Pdim(F) = q, and that each iteration the base regressor returns an f ∈ F such that the
edge (5) of f is bounded below by εmin and ‖r‖2

‖f‖2
≤ c. Then there exists a constant A ≥ 0

such that, for all δ ∈ (0, 1) and ρ > 0, if SQUARELEV.C is applied to a random sample
(drawn IID from P) of size at least

m(ρ, δ) =
(

AK 4

ρ2

)(

ln
(

1
δ

)
+ Pdim(F)

⌈
K 4

ρ2

⌉
ln

(
K 8
⌈ K 4

ρ2

⌉

ρ3

))

where K = 2 max(c ln(B2/2ρ)

ε2
min

, B), then with probability at least 1− δ the master hypothesis

FT after T = 2 ln( B2
2ρ

)

ε2
min
3 iterations has erP(FT ) < ρ.

Proof: The proof is identical to that of Theorem 4.3, with the assumption

‖r− r̄‖2

‖f− f̄‖2
≤ c

replaced by

‖r‖2

‖f‖2
≤ c. !
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4.3. Performance of EXPLEV

We now turn to the results on EXPLEV. We overload the notation and define Pexp(c) =
exp(c) + exp(−c)− 2 for scalar c, and use P−1

exp (·) for this function’s (non-negative) inverse.
Since the residuals depend on the master function F , so does the potential Pexp(r) =∑m

i=1

(
esri + e−sri − 2

)
. Recall that ∇Pexp(r) = −s exp(sri )+ s exp(−sri ), the gradient of

the potential with respect to F, and the “edge” is defined by

ε =
m∑

i=1

D(xi )ỹi f (xi )

where we assume f takes values in [−1, 1]. If this is not the case, then the edge ε can
be normalized by ‖f‖∞. Throughout the remainder of the section we assume that f takes
values in [−1, 1].

Again we start by bounding the progress obtained by EXPLEV in a single iteration. Our
proof bounding this progress uses certain extreme residual vectors, those having a fixed
Pexp(r) and minimizing ‖∇Pexp(r)‖1. As shown in Lemma 4.8 these vectors are the r(c) in
the following definition.

Definition 4.7. For c ≥ 0, let r(c) = (P−1
exp (c), 0, . . . , 0) and Sc = {r ∈ ,m |Pexp(r) = c}.

Lemma 4.8. For all c ≥ 0, we have that infr∈Sc ‖∇Pexp(r)‖1 = ‖∇Pexp(r(c))‖1.

Proof: See Appendix. !

To bound the rate of decrease for this worst case vector of residuals we require the
following technical Lemma.

Lemma 4.9. If Pexp(r) ≥ m + 1
m − 2, m ≥ 3, and ε < 1 then the quantity

√
(Pexp(r) + 2m)2 −

(
‖∇Pexp(r)‖1ε/s

)2 − 2m

Pexp(r)
≤
(

1− 1
6
ε2
)

.

Proof: See Appendix. !

We are now ready to prove the main invariant for EXPLEV. The proof of Theorem 4.10
shows that the choice of α used by EXPLEV minimizes an upper bound on the potential, and
thus EXPLEV may not be minimizing the new potential each iteration (Section 3.2 discusses
replacing the explicit choice of α with a line search). Note that the following theorem does
not rely on EXPLEV’s choice of scale factor s.

Theorem 4.10. If m ≥ 3, Pexp ≥ m + 1
m − 2 at the start of an iteration of EXPLEV, and

ε is the edge of the base function at that iteration then the step size α < 1
2s ln( 1+ε̂

1−ε̂
) ≤

1
2s ln( 1+εmax

1−εmax
) and the potential Pexp decreases by at least a factor of (1 − ε̂2

6 ) during the
iteration.
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Proof: The proof is structured to motivate the choice of α used by EXPLEV. We define
Q = Pexp + 2m and relate the potential Q′ at the end of an iteration to the potential Q at
the beginning of the iteration as follows.

Q′ =
m∑

i=1

[exp(s(ri − α f (xi ))) + exp(−s(ri − α f (xi )))]

=
m∑

i=1

[
exp(sri )β

− f (xi ) + exp(−sri )β
f (xi )
]

(setting β = exp(sα) > 1)

= 1
β

m∑

i=1

[
exp(sri )(β

2)
1− f (xi )

2 + exp(−sri )(β
2)

1+ f (xi )
2

]

≤ 1
β

m∑

i=1

[
exp(sri )

(
1− (1− β2)

(
1− f (xi )

2

))

+ exp(−sri )

(
1− (1− β2)

(
1 + f (xi )

2

))]
(14)

= 1 + β2

2β
Q + 1− β2

2β

m∑

i=1

[exp(sri ) f (xi )− exp(−sri ) f (xi )]

= 1 + β2

2β
Q + 1− β2

2βs
‖∇Pexp‖1

m∑

i=1

D(xi )ỹi f (xi )

= Q
(

1 + β2

2β

)
+
(

1− β2

2βs

)
‖∇Pexp‖1ε

≤ Q
(

1 + β2

2β

)
+
(

1− β2

2βs

)
‖∇Pexp‖1ε̂ . (15)

Inequality (14) uses the linear approximation of ab for b ∈ [0, 1]. Minimizing the right
hand side of (15) with respect to β > 1 yields

β =
√

(s Q − ‖∇Pexp‖1ε̂)(s Q + ‖∇Pexp‖1ε̂)

(s Q − ‖∇Pexp‖1ε̂)

=

√
(s Q + ‖∇Pexp‖1ε̂)

(s Q − ‖∇Pexp‖1ε̂)
, so (16)

α = 1
s

ln

√
(s Q + ‖∇Pexp‖1ε̂)

(s Q − ‖∇Pexp‖1ε̂)
.

Since Q = Pexp + 2m, this is exactly the α used by EXPLEV. Note that s Q > ‖∇Pexp‖1, so
β <

√
1+ε̂√
1−ε̂

and α < 1
2s ln 1+ε̂

1−ε̂
proving the first claim.
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We continue by substituting (16) into (15), simplifying, and subtracting 2m from each
side, giving

P ′exp ≤
√

Q2 − (‖∇Pexp‖1ε̂/s)2 − 2m.

To obtain the factor by which the potential decreases we divide both sides by Pexp.

P ′exp

Pexp
≤
√

Q2 − (‖∇Pexp‖1ε̂/s)2 − 2m
Pexp

=
√

(Pexp + 2m)2 − (‖∇Pexp‖1ε̂/s)2 − 2m
Pexp

Now Lemmas 4.8 and 4.9 show that if Pexp ≥ m + 1
m − 2 then

P ′exp

Pexp
≤ 1− ε̂2

6
.

Thus the potential decreases by a factor of 1− ε̂2/6 per iteration as required. !

We iterate this bound to obtain the following bound on the number of iterations required to
achieve small error on the sample, and to bound the size of the α’s. The following Theorem
relies on the scale factor s being set to ln(m)/η.

Theorem 4.11. If m ≥ 3, εmin is a lower bound on the edges of the base functions, and
each initial residual yi − F1(xi ) ∈ [−B, B], then for all parameter settings η > 0 and
εmax ≥ εmin, EXPLEV achieves |yi − FT (xi )| < η within

T =
⌈

ln(m) B
η

+ 1

ε2
min/6

⌉

iterations. Furthermore,

T∑

t=1

αt ≤
(B + 2η) ln 1+εmax

1−εmax

ε2
min/3

.

Proof: If Pexp ≤ exp(sη)+ exp(−sη)− 2 then each ri ≤ η and every F(xi ) is within η of
the corresponding yi . Theorem 4.10 implies that the potential drops by at least a factor of
1 − ε2

min/6 each iteration until Pexp ≤ exp(sη) + exp(−sη) − 2. Since the initial potential
is less than mes B , after T iterations the potential is at most mes B(1− ε2

min/6)T .
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Solving mes B(1− ε2
min/6)T ≤ exp(sη) + exp(−sη)− 2 for T gives that after

⌈
ln(m) + sB − ln(esη + e−sη − 2)

ln
(

1
1−ε2

min/6

)
⌉

iterations every residual is at most η. Using the fact that s = ln(m)
η

and simplifying we obtain




ln(m) + s B − ln(m + 1/m − 2)

ln
(

1
1−ε2

min/6

)




≤
⌈

ln
( m2

m2−2m+1

)
+ sB

ε2
min/6

⌉

≤
⌈

2 ln(3/2) + s B
ε2

min/6

⌉

≤
⌈

1 + s B
ε2

min/6

⌉
.

For the second claim, Theorem 4.10 shows that each αt ≤ η
2 ln(m)

ln( 1+εmax
1−εmax

). Therefore,
after T iterations the sum of the α values is at most

⌈ B
η

ln(m) + 1

ε2
min/6

⌉
η

2 ln(m)
ln
(

1 + εmax

1− εmax

)

≤
(

B
ε2

min/3
+ η

ln(m)ε2
min/3

+ η

2 ln(m)

)
ln
(

1 + εmax

1− εmax

)

≤ 2η + B
ε2

min/3
ln
(

1 + εmax

1− εmax

)

as required. !

Theorem 4.11 shows that EXPLEV produces a combined function in polynomial time that
approximately interpolates the sample to arbitrarily high accuracy.

In fact we can obtain better results by running the EXPLEV algorithm in stages, improv-
ing the target sample approximation each stage. EXPITERLEV does this as discussed in
Section 3.2, and has the following bound based on Theorem 4.11. Although the theorem is
stated for general parameter settings, setting z = 2 and εmax = 1/2 are natural choices.

Theorem 4.12. If m ≥ 3, εmin is a lower bound on the edges of the base functions, and
each yi ∈ [−B, B] then EXPITERLEV with parameters η′ > 0, εmax ≥ εmin, and z > 1 has
each |yi − Fτ (xi )| < η′ within

T =
⌈

ln(m)z + 1
ε2

min/6

⌉⌈
ln(B/η′)

ln(z)

⌉
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calls of the base learning algorithm. Furthermore,

T∑

t=1

αt ≤
(z + 2)B
(z − 1)

ln
( 1+εmax

1−εmax

)

ε2
min/3

Proof: Since the residuals decrease by at least a factor of 1/z each call to EXPLEV, at
most τmax = 2 ln(B/η′)

ln(z) 3 calls to EXPLEV are needed.
At the start of the j th call to EXPLEV the residuals are in [−B/z j−1, B/z j−1] and the η

parameter is B/z j . From Theorem 4.11 we see that at most

⌈
ln(m)z + 1

ε2
min/3

⌉

calls to the base learner are made during each call of EXPLEV. Multiplying this by the bound
on the number of calls to EXPLEV gives the desired result.

Theorem 4.11 shows that, during the j th call to EXPLEV, the sum of the α values increases
by at most

( B
z j−1 + 2 B

z j

)
ln 1+εmax

1−εmax

ε2
min/3

Therefore after τmax calls to EXPLEV, the sum of the α values is at most

τmax∑

j=1

( B
z j−1 + 2 B

z j

)
ln 1+εmax

1−εmax

ε2
min/3

=
(
B + 2 B

z

)
ln 1+εmax

1−εmax

ε2
min/3

τmax−1∑

j=0

1
z j

<
z

z − 1

(
B + 2 B

z

)
ln 1+εmax

1−εmax

ε2
min/3

as desired. !

The next theorem bounds the generalization error of the final hypothesis produced by
EXPITERLEV. It shows that, with high confidence, the master function returns a hypothesis
that is close to the true function on almost all of the domain. As before, it might help to
think of z = 2, and εmax = 1/2. In addition, the error tolerance of the final master function
is broken into two parts, η and γ . The value η is the maximum error on the sample while
γ is the additional acceptable error on unseen instances. One might naturally set each of
these to half of the allowable error. Ignoring the extra logarithmic factors, the sample size
depends on: the confidence as ln(1/δ), the error region of the master function as 1/ρ, and
the error tolerance as 1/γ 2. In addition, the sample size depends on the range of the target
function as B4 (through K ). Note that the number of iterations depends logarithmically on
both m (the number of examples) and B/η (the range divided by the error tolerance on the
sample).
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Theorem 4.13. Assume that the data is drawn IID from a distribution P on X with
y = g(x) for some function g : X → [−B, B], that the base regression functions f ∈ F
returned by the base learner map to [−1, +1] and have edges (11) at least εmin, and that
Pdim(F) = q is finite. Then ∃c > 0 such that the following holds for all ρ, δ ∈ (0, 1) and
all η, γ > 0 with probability at least 1− δ : EXPITERLEV with parameters η, εmax ≥ εmin,

and z > 1 returns an Fτ satisfying

P{x : |Fτ (x)− g(x)| < η + γ } > 1− ρ

after T = 2 ln(m)z+1
ε2

min/6
32 ln(B/η)

ln(z) 3 leveraging iterations if trained on a sample S of size m at
least

m(ρ, δ, η, γ ) = 3W ln2(W )

where

W = c
ρ

(

ln
(

1
δ

)
+
⌈

K 4

γ 2

⌉
q ln2

(
K
⌈ K 4

γ 2

⌉
q

γρ

))

and K = (z + 2)B
(z − 1)

ln
(

1+εmax
1−εmax

)

ε2
min/3

≥
T∑

t=1

αt

Proof: Let Fτ = FT =
∑T

t=1 αt ft be the master function returned by EXPITERLEV

after T leveraging iterations (over τ stages). By Theorem 4.12, the master function FT

has residuals at most η and
∑T

t=1 αt ≤ K , so the master function FT lies in the class
M = {

∑N
i=i wi fi : fi ∈ F,

∑N
i=1 |wi | ≤ K }.

In order to apply the standard generalization bounds, we need to re-scale the functions
so that they map X to [0, 1]. Let F ′ = FT

2K + 1
2 and g′ = g

2K + 1
2 . Furthermore, for each

h ∈M let h′(x) = h(x)
2K + 1

2 and M′ = {h′ : h ∈M}. (Note that the constraints on εmax and
z guarantee that K > B).

The functions in M′ map X to [0, 1] and

|h′(x)− g′(x)| < η + γ ⇔ |h(x)− g(x)| < 2ηK + 2γ K

so

Pm{S : (∃h′ ∈M′)(∀x ∈ S)|h′(x)− g′(x)| < η + γ }
= Pm{S : (∃h ∈M)(∀x ∈ S)|h(x)− g(x)| < 2ηK + 2γ K }.

Therefore if M′ generalizes from approximate interpolation with sample size mM′(ρ, δ,

η, γ ) then M generalizes from approximate interpolation with sample size

mM(ρ, δ, η, γ ) = mM′

(
ρ, δ,

η

2K
,

γ

2K

)
. (17)
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Theorem 21.14 in Anthony and Bartlett (1999) shows that if M′ has finite fat-shattering di-
mension then ∃c > 0 such that a sufficient sample size for generalization from approximate
interpolation is

c
ρ

(

ln
(

1
δ

)
+ fatM′

(
γ

8

)
ln2

(
fatM′
(

γ
8

)

γρ

))

. (18)

We can bound fatM′ in terms of K and q (recall that q is a bound on the pseudo-dimension
of the base function class) using Lemma A.2 to obtain

fatM′

(
γ

8

)
≤ 8
⌈

2144K 2

γ 2

⌉
q ln
(

27em4K 2

γ q

)
≤ 8
⌈

216 K 2

γ 2

⌉
q ln
(

29emK 2

γ

)
.

Let c1 = 82 216 K 2

γ 2 3q and c2 = 29eK 2

γ
, then ∃c > 1 such that a sufficient size for generalization

from approximate interpolation for M′ is any m satisfying

m ≥ c
ρ

(
ln
(

1
δ

)
+ c1 ln(mc2) ln2

(
c1 ln(mc2)

γρ

))
. (19)

Since m ≥ c1 > c2,

ln(mc2) ln2
(

c1 ln(mc2)

γρ

)
< 2 ln(m) ln2

(
2c1 ln(m)

γρ

)

< 2 ln(m)

(
ln(ln(m)) + ln

(
2c1

γρ

))2

< 2 ln(m) ln2(ln(m))

(
ln
(

2ec1

γρ

))2

.

Plugging this inequality back into (19) gives that a sufficient sample size for generalization
is any m satisfying

m

ln(m) ln2(ln(m))
≥ c

ρ

(
ln
(

1
δ

)
+ 2c1 ln2

(
2ec1

γρ

))
.

Note that if m ≥ 3 and m ≥ 3w ln2(w), then m
ln(m) ln2(ln(m))

≥ w. Therefore, a sufficient
sample size for generalization from approximate interpolation for M′ is

m ′M(ρ, δ, η, γ ) > 3w′ ln2(w′).

where

w′ = c
ρ

(
ln
(

1
δ

)
+ 2c1 ln2

(
2ec1

γρ

))
.
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Recall that w′ depends on γ and K (and thus η and εmin) through c1. Replacing γ with
γ /2K as in (17) shows that there is a c̃ such that a sufficient sample size for the original
class M to generalize from approximate interpolation is

mM(ρ, δ, η, γ ) = mM′

(
ρ, δ,

η

2K
,

γ

2K

)
≥ 3w ln2(w)

where

w = c̃
ρ

(

ln
(

1
δ

)
+
⌈

K 4

γ 2

⌉
q ln2

(
K
⌈ K 4

γ 2

⌉
q

γρ

))

as desired. !

The proof of Theorem 4.13 can also be used to prove a similar result for EXPLEV, with
the bounds of Theorem 4.11 replacing those of Theorem 4.12. Note that we have made
little effort to optimize the constants in the generalization bound, as we use several general
purpose bounds with intrinsic large constants in the proof.

5. Experimental results

We performed a modest set of experiments to validate our theoretical results. We tested all
four algorithms on six standard data sets: Boston housing, servo, auto-mpg and abalone data
sets from UCI (Blake & Merz, 1998), the Friedman 1 data set from Breiman et al. (1984), and
data generated from the SINC function.4 We especially wanted to test the assumption that
simple base learners can achieve an edge on the modified samples created by the algorithms
(see Section 2.3). The experiments indicate that even simple base learners generally achieve
a reasonable edge on the modified samples, even after thousands of iterations.

In addition to examining the performance of the base learners, the experiments also
validate several aspects of the analysis. They show that (for most data sets) the algorithms
exponentially decrease the potential and maximum residuals. As expected, EXPLEV and
EXPITERLEV tend to be more effective than the SqrLev algorithms in reducing the maximum
residual. However, we were surprised to find that SQUARELEV.C is often more effective in
reducing the residual on small samples. Overall, the behavior of the algorithms is, at least
qualitatively, as predicted by the theoretical analysis.

5.1. Experimental procedure

We evaluated all four algorithms on four data sets from the UCI (Blake & Merz, 1998)
repository and two artificial data sets, the one dimensional SINC function and the Friedman
1 data (Breiman et al., 1984). Some properties of these data sets are summarized in Table 1.

With the algorithms capable of using a base classifier (EXPLEV, EXPITERLEV and
SQUARELEV.C) we used decision stumps minimizing the classification error as the base
learner. With SQUARELEV.R we used regression stumps minimizing the squared loss.
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Table 1. Table of parameters of data sets.

Data Set Size Features Initial s

SINC 500 1 150

Friedman 1 400 10 20

Abalone 2090 8 20

auto-mpg 196 7 10

servo 84 4 80

Boston housing 253 13 5

Each iteration the coefficients for the base rules were found using a line search to minimize
the resulting potential.

For EXPLEV, the performance of the algorithm is very sensitive to the initial choice of
s. For these experiments, we chose s to be as large as possible given the precision of the
machine (see Table 1).

Several practical issues arise when applying EXPITERLEV, in particular, the choice of
rescaling parameter z is not obvious. We implemented a modified version of EXPITERLEV

that directly manipulates the scale factor s used by EXPLEV. This version keeps the potential
between the sample size m and m2, increasing the scale factor s so that the potential becomes
m2 whenever it becomes too small. This ad-hoc range is somewhat arbitrary, and we made
no effort to tune it.

The experiments focus on the sample performance rather than the generalization error.
The in-sample performance is sufficient for most of the properties we are interested in
verifying. Examining the generalization error requires more sophisticated experiments with
large numbers of runs to obtain statistically significant results. Furthermore, the general
purpose techniques we use to bound the generalization error involve large constants that
will make even qualitative empirical validation difficult.

5.2. Results

The main weakness of our theoretical results is the assumption that the base learner can
consistently return hypotheses with a useful edge, even when the data are re-labeled by
the master algorithm. Fortunately, our experiments appear to indicate that this assumption
may often hold in practice. On all but one of the data sets we examine, the edge remains
significant over thousands of iterations of the algorithm. The edges on all data sets for
the four algorithms are plotted in figure 4. The edges start high and rapidly decay to a
moderate value, usually around 0.05. Even after several thousand iterations, the edges are
still significant, and it is plausible that the edges remain significant for many more iterations.
The one exception is the difficult servo data set. There it appears that our simple decision
stump base learners are not sufficiently powerful. The spikes in the plot for EXPITERLEV

reflect changes in the scaling factor.
In addition to examining the edges of the base hypotheses we examined the decrease in

potential and maximum residual yielded by each of the algorithms. The logarithm of the
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potential on each data set for each algorithm is plotted in figure 5 and the logarithm of
the maximum residual on each training set is plotted in figure 6. Note that the saw-tooth
behavior of EXPITERLEV’s potential is due to the changes in the scale factor. After the
initial rapid learning, the log of the potential and the log of the maximum residuals decrease
roughly linearly for many thousands of iterations. This supports our theoretical results in
Theorems 4.1, 4.4, and 4.10 which prove that the potentials decrease exponentially given a
consistent edge.

We were surprised to see that the SqrLev algorithms often obtained better maximum
residuals than EXPLEV. However, this appears to happen primarily on smaller data sets.
To examine this phenomenon in more detail we tested SQUARELEV.C and EXPLEV on the
SINC and Friedman 1 artificial data sets while varying the sample size. The results are
plotted in figures 7 and 8. The plots illustrate that, while SQUARELEV.C may obtain smaller
maximum residuals on very small data sets, its ability to reduce the maximum residual
quickly degrades as the size of the training set increases.

These figures raise another interesting issue. The maximum residuals for EXPLEV often
have an interesting “swan’s neck” appearance (figure 8(b)). We believe that this slow-fast-
slow rate of decrease is due to the choice of scaling factor, and progress is most rapid when
the scaling factor is appropriate for the current magnitude of the residuals. This reinforces
the motivation behind EXPITERLEV, which adaptively changes the scaling factor. Although
our ad-hoc tuning for EXPITERLEV is not always better than EXPLEV, it does appear to be
competitive on all of the data sets and considerably better on several.

Although the progress bounds for the SqrLev algorithms are tight, we make approxima-
tions when bounding EXPLEV’s performance. The ratio between the observed decrease in
potential for EXPLEV and the analytical bound on its decrease is plotted for the Friedman
data set in figure 9. This figure shows that the analytic bound is initially quite loose, but it
appears to tighten over time, with the largest value for the ratio being 0.992. This implies
that there may be room for modest improvement in our bounds on EXPLEV.

Another source of looseness in the EXPLEV bounds on the maximum residual comes from
converting the bound on the potential to a bound on the maximum residual in Theorem 4.11.
In figure 10 we plot the ratio between the actual maximum residual and the bound on the
maximum residual based on the current potential for the Friedman 1 data set. Although the
bound is pessimistic, it remains reasonable. It is worth noting that the scale factor s is what
makes this bound tight. A large s factor increases the proportion of the potential placed on
the example with the largest residual.

For some of the data sets we examined the EXPLEV potential falls below the sample size
m. For example, after approximately 500 iterations EXPLEV achieves potential less than
9 ≈ ln(m) on the SINC data set. Recall that the progress bound in Theorem 4.10 only
applies when the total potential is larger than m. If the total potential is less than m then the
magnitude of each residual is small, at most (ln m)/s. A second order Taylor expansion of
the EXPLEV potential, esr + e−sr − 2, around sr = 0 shows that the potential approaches
the SQUARELEV.C potential. In fact, it is possible to show a progress bound (for small
enough residuals) that is arbitrarily close to the corresponding bound for SQUARELEV.C.
We see this behavior on very small samples. Figure 11 plots the maximum residuals for
EXPLEV, SQUARELEV.C and EXPITERLEV on a 100 example subset of the Friedman 1 data.
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Figure 7. The natural log of the maximum residual on the Friedman 1 data set with increasing training set size.
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Figure 8. The natural log of the maximum residual on the SINC data set with increasing training set size.
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Figure 9. The ratio between progress bound and actual progress on the Friedman 1 data set.

Figure 10. The ratio between the maximum residual achieved by EXPLEV and the bound given by the current
potential i.e. ln(Pexp)/s for EXPLEV on the Friedman 1 data set.
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Figure 11. The natural log of the maximum residuals for a small version of the Friedman 1 data set for
EXPLEV,EXPITERLEV and SQUARELEV.C.

In this figure we observe that the maximum residual curves for EXPITERLEV and EXPLEV are
parallel for the initial iterations. However, once the residuals become small enough, EXPLEV

begins performing like SQUARELEV.C instead i.e. their maximum residual curves become
parallel. This happens around iteration 4000 at which point the potential is approximately
66. It appears therefore, that EXPLEV will continue to improve its master hypothesis even
when the conditions of Theorem 4.10 are not satisfied.

Finally, figure 12(a) shows how closely the Sinc function is approximated after 100
iterations on a training set of 100 examples, using EXPLEV with decision stumps, while
figure 12(b) shows the same experiment after 1000 iterations. These figures illustrate how
well the algorithm can approximate the target even on a small dataset.

6. Conclusions

In this paper we present three leveraging algorithms for the regression setting. We give
progress guarantees and generalization bounds that depend on the good behavior of the
base regressors. The only regression algorithms that we are aware of with similar bounds
are AdaBoost.R (Freund & Schapire, 1997) and Lee, Bartlett, and Williamson’s Construct
algorithm (Anthony & Bartlett, 1999). The bounds given for AdaBoost.R require the base
learner to perform well with respect to a changing loss. The bounds for the Construct
algorithm are agnostic in flavor and appear stronger than the bounds we are so far able to
show, however, they assume that the base learner returns an almost optimal f ∈F . Although,
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Figure 12. The approximation to the Sinc function produced by EXPLEV on 100 examples after (a) 100 rounds
and (b) 1000 rounds using decision stumps.
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our bounds also rely on assumptions on the base learners, we feel that these assumptions
may be more reasonable. In particular, the base regression functions only need to be slightly
better than random guessing (in some sense). However, even these assumptions seem strong
when the sample fed to the base learner is modified. Perhaps future research will be able to
weaken our assumptions and identify conditions ensuring that the constructed samples fall
into the base regressors area of competence.

Our experiments validate our theoretical results highlighting several interesting features
of the algorithms. In particular they show how the algorithms behave as the size of the
training set changes. They also demonstrate that EXPLEV continues to work well outside
the regions for which the theoretical bounds hold. Furthermore, these experiments suggest
that the base learners continue to have a significant edge despite the relabelings imposed
by our algorithms.

The generalization bounds we derive for SQUARELEV.R and EXPLEV are of very different
flavors. In particular, the bound on EXPLEV has a considerably stronger form than that
for SQUARELEV.R. The key to obtaining these bounds is bounding

∑T
t=1 αt . We found it

surprising that for EXPLEV, with the appropriate scale factor, the sum of α values depends
weakly on the desired accuracy η, while the number of iterations grows as 1/η. EXPITERLEV

has a similar behavior, the number of iterations grows as z/ ln z while the sum of the α values
shrinks as (z + 2)/(z − 1).

Apppendix A: Technical Lemmas

Lemma 4.8. For all c ≥ 0, we have that infr∈Sc ‖∇Pexp(r)‖1 = ‖∇Pexp(r(c))‖1.

Proof: Assume to the contrary that some r ∈ Sc has ‖∇Pexp(r)‖1 < ‖∇Pexp(r(c))‖1. If
c = 0 then Sc = {r(c)} so we may assume without loss of generality that c > 0 and r1 > 0.
If r has no other non-zero component, then ‖∇Pexp(r)‖1 = ‖∇Pexp(r(c))‖1. If r has another
non-zero component (say ri ) then we construct r′ from r by setting r ′i = 0, r ′1 so that r′ ∈ Sc,
and preserving the other components of r. We now show that ‖∇Pexp(r′)‖1 < ‖∇Pexp(r)‖1.
Repeating the construction yields r(c) and gives the contradiction.

To simplify the notation, let a = exp(s|r1|), b = exp(s|ri |), and z = a + b + 1/a +
1/b− 2. Note that z is an increasing function of a and b since a > 1, b > 1. Set d =
exp(s|r ′1|) > 1, and since Pexp(r) = Pexp(r′),

Pexp(r ′1) + Pexp(0) = Pexp(r1) + Pexp(ri ) (20)

d + 1
d
− 2 + 0 = a + 1

a
+ b + 1

b
− 4 (21)

d + 1/d = z. (22)

Solving for d and taking the root greater than 1 gives

d = 1
2

z + 1
2

√
z2 − 4 . (23)
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We now consider the norms of the gradients. Note that for all v ∈ Sc,

‖∇Pexp(v)‖1 =
m∑

i=1

|−sesvi + se−svi | (24)

= s
m∑

i=1

(
e|svi | + e−|svi | − 2e−|svi |

)
(25)

= s

(

c + 2m − 2
m∑

i=1

e−|svi |

)

. (26)

Therefore,

‖∇Pexp(r′)‖1 − ‖∇Pexp(r)‖1

s

=
(‖∇Pexp(r′)‖1

s
− c − 2m

)
−
(‖∇Pexp(r)‖1

s
− c − 2m

)

=
(
− 2

d
− 2
)
−
(
−2

a
− 2

b

)
.

Lemma A.1 shows that the above quantity is negative for a, b > 1 and ‖∇Pexp(r′)‖1 <

‖∇Pexp(r)‖1 as desired. !

Lemma A.1. For a, b > 1, the quantity

−1(
a + b + 1

a + 1
b − 2 +

√(
a + b + 1

a + 1
b − 2
)2 − 4
) − 2 + 2

a
+ 2

b
(27)

is negative.

Proof: This quantity can be rewritten as

−(a + b)((ab + 1)(ab − b − a) + 2ab − (ab − b − a)
√

x)

(a2b + ab2 + b + a − 2ab +
√

x)
(28)

where

x = (ab + 1)(a + b)((ab + 1)(a + b)− 4ab) (29)

Since a, b > 1, the denominator is positive so we concentrate on the numerator. We begin
by noting that the numerator is negative if ab ≥ (a + b) so we focus on case ab < (a + b).
In this case −(ab − b − a)

√
x is positive and we now proceed to upper bound x . Starting
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with the third factor,

(ab + 1)(a + b)− 4ab < (ab − 1)2

⇔ a2b + ab2 − 4ab + a + b < a2b2 − 2ab + 1

⇔ a2b + ab2 + a + b − 2ab − a2b2 − 1 < 0

⇔ −(b − 1)(a − 1)(ab + 1) < 0 (30)

which is true since a, b > 1.
Since we are assuming that ab < (a + b) then either a < 2 or b < 2, without loss of

generality we assume that a ≤ b and hence a < 2. With this assumption we have

−a3 + a − a2b + b < 0

(ab + 1)(a + b)− a(a + b)2 < 0 (31)

(ab + 1)(a + b) < a(a + b)2 .

Combining the left side of (30) with (31) shows that the square root term in (28) is bounded
by

−(a + b)(ab − a − b)(ab − 1)
√

a .

We now lower bound the first term in the numerator of (28).

ab(a − 1)(b − 1) > 0 ⇔ a2b2 − ab2 − a2b + ab > 0

⇔ a2b2 − ab2 − a2b + 3ab − b − a > 2ab − a − b

⇔ (ab + 1)(ab − b − a) + 2ab > 2ab − a − b

So the numerator in (28) is upper bounded by

−(a + b)((2ab − a − b) + (ab − b − a)(ab − 1)
√

a)

We can simplify this by removing a factor of (a + b) and replacing a by q2, to obtain

−(q − 1)(−q4b + q4b2 − q3b + q3b2 + q2 − 2q2b + b) .

We can remove a factor of (q − 1) to obtain

− (−q4b + q4b2 − q3b + q3b2 + q2 − 2q2b + b). (32)

and it is then straightforward to show that what remains is negative for b = q2 ∀q > 1 and
q = 1 ∀b > 1. The proof is now completed by showing that this is decreasing for all b > q2

and so is negative for all q > 1, b > q2 as required. The derivative of (32) is

−2(q4 − q3)b + q4 + q3 + 2q2 − 1 (33)

which is negative. This completes the proof. !
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Lemma 4.9. If Pexp(r) ≥ m + 1
m − 2, m ≥ 3, and ε < 1 then the quantity

g(r) =

√
(Pexp(r) + 2m)2 −

(
‖∇Pexp(r)‖1ε/s

)2 − 2m

Pexp(r)
≤
(

1− 1
6
ε2
)

. (34)

Proof: Fix any c ≥ m + 1
m − 2, and consider g(r) restricted to r ∈ Sc. Once the potential

is fixed, g(r) is decreasing in ‖∇Pexp(r)‖1. Therefore it suffices to show the inequality for
a vector in Sc that minimizes ‖∇Pexp(r)‖1. Lemma 4.8 shows that r(c) = (r (c)

1 , 0, . . . , 0) is
one such vector.

The constraint on c implies that exp(sr (c)
1 ) ≥ m. Set a = exp(sr (c)

1 )/m, so: a ≥ 1,
Pexp(r(c)) = am + 1

am − 2, and ‖∇Pexp(r(c))‖1 = am + 1/(am). We use a linear over-
approximation of

√
x − y around x to bound g(r(c)) as follows:

g(r(c)) =

√(
am + 1

am − 2 + 2m
)2 −
(
am − 1

am

)2
ε2 − 2m

am + 1
am − 2

≤
am + 1

am − 2 + 2m − (am− 1
am )

2
ε2

2(am+ 1
am−2+2m)

− 2m

am + 1
am − 2

= 1−
(
am − 1

am

)2
ε2

2(am + 1
am − 2 + 2m)(am + 1

am − 2)

= 1− ((am)2 − 1)2ε2

2((am)2 + 1− 2am + 2am2)(am − 1)2

= 1− (am + 1)2ε2

2((am)2 + 2am2 − 2am + 1)

.= h(a, m) .

We now show that h(a, m) is decreasing in a.

∂h(a, m)

∂a
= − (am2 − 2am − m + 2)m(am + 1)ε2

(a2m2 + 2am2 − 2am + 1)2
,

which is negative whenever a≥ 1 and m≥ 3. Therefore, h(a, m) is maximized over
a ∈ [1,∞) when a = 1, and

g
(
r(c)) ≤ 1− (m + 1)2ε2

2(3m2 − 2m + 1)
.

Taking the derivative of this bound with respect to m gives

2ε2(2m − 1)(m + 1)

(3m2 − 2m + 1)2
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which is positive when m ≥ 3. Therefore

g
(
r(c)) ≤ lim

m→∞

(
1− (m + 1)2ε2

2(3m2 − 2m + 1)

)
= 1− ε2

6

as desired. !

The following Lemma relates the complexity of the master function class to the com-
plexity of the base hypothesis class and the size of the coefficients used.

Lemma A.2. Suppose F is a class of [−1, 1]-valued functions defined on a set X, and
the covering number N2(ε,F, m) is finite for all natural numbers m and ε > 0. Suppose
in addition that F = −F and F contains the zero function. For V ≥ 1 define

M =
{

N∑

i=1

wi fi : N ∈ N, fi ∈ F,
N∑

i=1

|wi | ≤ V

}

.

Then, for m ≥ fatM(16ε),

fatM(16ε) ≤ 8 lnN2(ε,M, m)

≤ 8
⌈

4V 2

ε2

⌉
lnN2

( ε

2V
,F, m
)

≤ 8
⌈

4V 2

ε2

⌉
Pdim(F) ln

(
em4V 2

εPdim(F)

)
.

Proof: The lemma follows from Theorems 12.10, 14.14 and 12.2 in Anthony and
Bartlett (1999). !
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Notes

1. In some circumstances a “bad” regressor can be “negated” to obtain a function with a positive edge. Previous
boosting work for classification dealt with this by allowing the master algorithm to choose a negative coefficient
α. Here we assume that the base regressor performs the negation so that the master’s coefficients are always
positive.

2. The Constructive algorithm of Lee, Bartlett, and Williamson (1995) is a regression algorithm for this agnostic
framework.

3. Recall that the ‖f‖∞ normalization is equivalent to the assumption that f (x) ∈ [−1, 1].
4. SINC(x) = sin(πx)/πx
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